Abstract
In the present work, effects of using magnetic nanofluid and also applying an external magnetic field on the critical heat flux (CHF) of subcooled flow boiling has been studied experimentally. The experiments have been applied in upward flow direction in a 12mm I.D., 19mm O.D. and 0.75m length annular test section. Inlet subcooling was kept constant and the mass flux was varied in the range of 0–150kg/m2s while the exit was at atmospheric pressure. Ferrofluids with water as a base fluid and 0.01% and 0.1% volume fractions of Fe3O4 nanoparticles were utilized. The results indicates that the CHF of subcooled flow boiling was increased by using nanofluid as a working fluid, which was mainly due to the deposition of the nanoparticles on the surface of inner tube, and consequently, increasing the surface wettability. Furthermore, an external magnetic field by utilizing quadrupole magnet was applied on the subcooled boiling flow at the near exit of the test section. The obtained results indicated that applying magnetic field caused an enhancement in CHF values of both pure water and ferrofluids. The main reasons for such effect of magnetic field can be justified to changing water properties under action of the magnetic field, single-phase convection heat transfer enhancement, suppression of nucleate boiling, and stabilization of boiling flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.