Abstract
The effect of horizontal waves on flexible netting panels is examined in this study, to evaluate the testing method of pretensioned mooring, radial systems, and flexible netting structures. The netting was suspended at a specific hanging ratio for six polyethylene panels with different characteristics. The aim was to evaluate the calculation method for horizontal wave forces on flexible netting panels. A regular wave was used in the experiment, with wave period 0.8–2.0 s and wave height 50–250 mm. The force on the netting structure was recorded by a tension transducer and digital signal recorder, and was simulated by a cubic spline in terms of the wave experiment under different wave conditions. The horizontal wave force on the netting panel changed periodically and asymmetrically, which was similar to the surface wave elevation. The horizontal wave force was related to the netting panel height and width (l), wave height (H) and wave length (L), twine diameter (d) and bar length (a) of the mesh. Using dual series relations, least-squares approximation, and multiple stepwise regression analysis, the following formula was obtained for the horizontal wave average apex value (F) on the netting panel: F=0.13ρgl(H/2)2(d/a)(H 0.64 L 0.77/0.9a 0.44).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.