Abstract
The accumulation of dust particles deteriorates the performance of solar cells and results in appreciable losses in the generated power due to the sun irradiance scattering effects on the surface of the solar panel. This study investigates the impact of dust accumulation on photovoltaic solar modules in Baghdad city in Iraq. For this purpose an experiment has been conducted to quantify losses caused by the accumulation of dust on the surface of three identical photovoltaic solar modules. The modules have been installed with direct exposure to weather conditions, in a well controlled experimental setup. Subsequently, measurements of dust accumulation on modules have been taken on daily, weekly and monthly basis. The dust density and size distribution of aerosol particles and fibers have been also investigated and measured by a highly sensitive aerosols measuring system. The dusted module and another similar clean module have been then exposed to constant radiation and constant temperature using a solar simulator as light source. The deposition of the dust on the surface of the photovoltaic solar modules showed a reduction in both the short circuit current (Isc) and the output power compared to the same parameters of the clean module. The average degradation rate of the efficiencies of the solar modules exposed to dust are; 6.24%, 11.8% and 18.74% calculated for exposure periods of one day, one week and one month. The experimental results are well compared with the calculations obtained by a theoretical model recently developed by the authors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.