Abstract

To study the effect of CO2 injection pressure on gas migration characteristics and coalbed methane (CBM) extraction, a platform for the experimental replacement of CH4 with CO2 was used to conduct experiments on the replacement of CH4 under different CO2 injection pressures and analyze the gas transport characteristics and CH4 extraction during the experiment. The results reveal that the rate of gas migration out of the coal seam accelerates with increasing gas injection pressure, as determined by comparisons of the migration rates between adjacent monitoring points. The change trend of the CH4 desorption rate under different gas injection pressures is divided into slow decline, sharp decline, and stability stages, and the maximum value of the effective diffusion coefficient increases from 2.3 × 10-5 to 3.4 × 10-5 and 4.6 × 10-5 cm2/s as the gas injection pressure increases from 0.6 to 0.8 and 1.0 MPa. Similarly, the change pattern of coal seam permeability can be divided into slow decline, sharp decline, and stability stages. After the gas injection pressure was increased from 0.6 to 0.8 and 1.0 MPa, the CH4 desorption volume increased from 90.2 to 94.1 and 97.8 L, whereas the coal seam CO2 sequestration volume increased from 269.2 to 274.2 and 322.8 L, respectively. In contrast, the CH4 extraction efficiency increased from 76.9 to 80.2 and 82.9%, respectively. The research results have important reference value and practical significance for optimizing the CO2 injection pressure and improving the CBM extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.