Abstract

Low power capillary discharge based pulsed plasma thrusters (CDPPTs) are electrothermally dominated thrusters and they have aroused renewed interest in the investigation and enhancement of the basic performance for the application of micro/nano satellites recently. Research on the ignition mechanism of a CDPPT has been conducted to provide insight into the optimization of the structure design and promotion of the lifetime performance. It has been found that the electrical parameters, the geometry parameters, and the cumulative effect of discharge jointly determine the discharge ignition characteristics. A single ignition process is divided into the breakdown of igniter and the development of the main discharge, while the results show that the jitter of the ignition delay time is mainly introduced from the former. Shorter ignition delay time and lower jitter can be obtained with a higher ignition energy and main charging voltage or a shorter and narrower cavity, which is positively correlated to the electric field distribution along the propellant surface. Moreover, with long duration experiments, it reveals that the surface deposits and morphology of propellant and igniter are the dominant factors that cause the dispersity of the ignition effect and main discharge characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.