Abstract

In this work, the discharging process of the binary mixture composed of sphere and sphere-paired particles in a two-dimensional silo was studied. High-speed camera and self-developed particle tracking velocimetry (PTV) program were used to capture the flow behaviors of all particles. The key parameters of mixed flow, including coordination number, horizontal displacement and mechanical energy loss in the discharge process, were highlighted. It was found that the increase of sphere-paired particles can decrease the average coordination number of particles during the discharging process. The analysis about the loss of mechanical energy and the horizontal displacement of particles indicated that sphere-paired particles preferentially squeezed out sphere particles from fast flow field above the outlet. Moreover, an empirical formula was proposed to assess the influence of the proportion of sphere-paired particles on the discharge flow rate. Sphere-paired particles tended to hinder the discharging process, which was caused by the rotation around their centroids and the angular deflection close to angle of the hopper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.