Abstract

ABSTRACT The article focuses on the physical properties of nanofluids based on ethylene glycol (EG) with dispersed zirconium dioxide (ZrO2) nanoparticles. For this purpose, the two-step method was applied to prepare samples with five different nanoadditive volume fractions (0.002, 0.004, 0.006, 0.0081, 0.0102). No surfactants were used in the sample preparation process. All materials are commercially available and were used without any modification. To determine the physical properties of ZrO2-EG nanofluids, various techniques were used. Oscillating U-tube method, Du Noüy ring method Ohm law, and dielectric spectroscopy were applied to obtain the mass density, surface tension, electrical conductivity and permittivity, respectively. All measurements were performed at a constant temperature of 298.15 K. The effect of nanoparticles volume fraction on the physical properties of the prepared nanofluids was determined. The mass density, surface tension, electrical conductivity and permittivity increase with the increasing content of ZrO2 in ethylene glycol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call