Abstract

The identification of crack stress thresholds and damage evolution from circumferential strain control triaxial tests are presented in this paper. As underground excavations become deeper to exploit mineral resources or construct civil projects, it has become increasingly important to determine the full stress–strain and damage evolution behaviours of brittle rock. Therefore, post-peak reaction of Class II rock or ‘snap-back’ behaviour must be captured to show the response of the material under self-sustaining failure. To investigate this, a series of triaxial compression tests were carried out for a granite sourced from over 1000 m depth. The tests were controlled using the feedback of lateral strain gauges attached to the Hoek cell membrane, to allow for constant, slow dilation of the specimen. The test results were then input to existing methods along with two new techniques, to identify the crack stress thresholds of crack closure, crack initiation and damage. It was found that although the crack closure threshold is comparable for axial and lateral control testing, the crack initiation and damage thresholds are significantly higher for the tests conducted in this study compared to most existing research. This result highlights the importance of the circumferential strain control method in triaxial tests when determining the post-peak behaviour and damage evolution of brittle rock. This was made easier with the strain gauged membrane proposed in this study, which provides reliable measurements throughout the duration of rock testing. Therefore, full stress–strain and damage evolution data can be obtained for use in damage-plasticity constitutive models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.