Abstract
To control the spread and transmission of airborne particles (especially SARS-CoV-2 coronavirus, recently) in the indoor environment, many control strategies have been employed. Comparisons of these strategies enable a reasonable choice for indoor environment control and cost-effectiveness. In this study, a series of experiments were conducted in a full-scale chamber to simulate a conference room. The control effects of four different strategies (a ventilation system (320 m3/h) with and without a baffle, a specific type of portable air cleaner (400 m3/h) and a specific type of desk air cleaner (DAC, 160 m3/h)) on the transportation of particles of different sizes were studied. In addition, the effects of coupling the ventilation strategies with five forms of indoor airflow organization (side supply and side or ceiling return, ceiling supply and ceiling or side return, floor supply and ceiling return) were evaluated. The cumulative exposure level (CEL) and infection probability were selected as evaluation indexes. The experimental results showed that among the four strategies, the best particle control effect was achieved by the PAC. The reduction in CEL for particles in the overall size range was 22.1% under the ventilation system without a baffle, 34.3% under the ventilation system with a baffle, 46.4% with the PAC, and 10.1% with the DAC. The average infection probabilities under the four control strategies were 11.3–11.8%, 11.1–11.8%, 9.1–9.5%, and 18.2–19.7%, respectively. Among the five different forms of airflow organization, the floor supply and ceiling return mode exhibited the best potential ability to remove particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.