Abstract

Plunger gas lift process technology is an economical solution to the problem of gas well liquid buildup. However, in-house simulation experiments revealed that the high-speed movement of the plunger may lead to fluid leakage and generate annular gap frictional resistance. To address this issue, a detailed experimental study was conducted to comparatively analyze five existing frictional-resistance models, which were found to have significant deviations. Therefore, we propose a new model of annular gap frictional resistance and validate it with experimental data, and the results show that the new model is more accurate and reliable. We also conducted a comparative analysis of production-site examples by using VB programming and found that when considering the annular gap frictional resistance, the upward travel time of the plunger was delayed, the difference between the upper and lower end face pressures was significant, and the difference in speed was 1.73 m/s. This indicates that the annular gap frictional resistance cannot be ignored and is crucial for optimizing plunger gas lift process technology and improving the drainage efficiency of gas wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call