Abstract

In order to characterize the influence of cavitation in a nozzle on a turbulent premixed kerosene/air flame, an experimental study was conducted using a NexGen burner. This study was carried out in two distinct stages. The first stage was devoted to characterizing the necessary conditions for inducing the cavitation phenomenon, using a novel experimental device enabling fluidic study. The second stage enabled the characterization of the influence of cavitation on a flame, building upon the previously obtained results. To this end, three DELAVAN nozzles (2.25; 2.5; 3.0 80 W) were employed. The fluidic characterization stage involved the manufacture of transparent nozzles, facilitating the integration of piezoelectric pressure sensors. The results showed that cavitation has a significant influence on the temperature and density heat flux flame associated to the effect on the flame structure represented by three distinct zones: continuous flame, intermittent flame and plume flame. For the 2.25 80 W nozzle based on the smallest diameter, the risk of cavitation is the highest, and the results showed that for the lowest value of the cavitation number, the continuous flame was no longer visible proving the harmful effects of cavitation on the combustion of a premixed flame from a burner such as the NexGen burner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call