Abstract

The bond–slip degradation relationship between carbon fiber-reinforced polymer and steel in a freeze–thaw environment is crucial to evaluate the long-term service performance of steel structures strengthened with carbon fiber-reinforced polymer plates. However, limited studies on the durability and long-term performance of the carbon fiber-reinforced polymer-steel-bonded interface are the major obstacle for the application of carbon fiber-reinforced polymer plates in strengthening steel structures. This paper reports an experimental study to investigate the effects of the carbon fiber-reinforced polymer bond length and the freeze–thaw cycles on the bond behavior of the carbon fiber-reinforced polymer-steel-bonded interface. The three-dimensional digital image correlation technique is applied to obtain displacements and strains on the surface of the single-shear specimen. The experimental results present herein include the failure mode, the ultimate load, the carbon fiber-reinforced polymer strain distribution, the displacement distribution, and the bond–slip relationship. The results show that the ultimate load increases with increasing bond length until a certain bond length value is reached, after which the ultimate load remained approximately constant, and the ultimate loads of carbon fiber-reinforced polymer-steel interface decrease gradually under freeze–thaw cycles. The bond–slip parameters degradation models are proposed, and the bond–slip degradation relationship under the freeze–thaw cycles is established. Finally, the bond–slip degradation relationship is confirmed through comparisons with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.