Abstract

This article presents the experimental results obtained by the testing an experimental model of water distribution which is flexible and above-head mounted on a seismic platform, and their validation in a theoretical manner, but also by the Finite Element Method, using the ANSYS simulation program. This type of system shown by the experimental model is desired to be used in practice not only in seismic areas, but also in the areas of heavy road transport, landslides, etc. thorugh the use thereof in the most stressed points of the network (hearth entry/exit, before/after an elbow, etc.) but also on long routes, at optimal distances. The results achieved are related to glass- reinforced plastic (GRP) pipes with a nominal diameter DN = 250 mm, but conclusions may be drawn starting from these to help future research where the mass of the earth is desired to be taken into account. The present results are comprehensive for buried pipes operated dynamically or seismically at low-medium intensity, as this type of earthquake occurs more and more often in Europe. The experimental tests in this article do not have the characteristics necessary for a high intensity seismic action (above 5° Richter).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.