Abstract

Lightweight bulletproof plate is highly demanded in the field of security field. A novel plate of carbon fiber reinforced plate (CFRP)/aramid filament bundles (AFB) sandwich plate is manufactured through winding methods in this paper. The ballistic performance is evaluated and failure mechanism is explored on the designed six CFRP/AFB sandwich plates. It is found that the sandwich structure of 3-4 × 16 is the best structure by comprehensively considering the energy absorption, Coefficient of Variation(CV) and shaping difficulty, of which the v50 and the average energy absorption are 225.26 m/s and 150.60 J, respectively. In addition, for the case that the number of filaments in the first entanglement is more and the number of first entanglement in the secondary entanglement is less, the ballistic performance would be better. To the failure mechanism, the upper CFRP is damaged by shear failure and the bottom CFRP shows delamination and separation in the impact process. The filament bundle plate in the core layer is benefit in resistance to projectile impact and it fails mainly by the disintegration and bending. This novel CFRP/AFB sandwich plate is a new direction for producing ballistic proof plate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.