Abstract
Azimuthal acoustic logging can survey the downhole formation more accurately, and the acoustic source is the crucial component of the downhole acoustic logging tool with azimuthal resolution characteristics. To realize downhole azimuthal detection, assembling multiple transmitting piezoelectric vibrators in the circumferential direction is necessary, and the performance of azimuthal-transmitting piezoelectric vibrators needs attention. However, effective heating test and matching methods are not yet developed for downhole multi-azimuth transmitting transducers. Therefore, this paper proposes an experimental method to comprehensively evaluate downhole azimuthal transmitters; furthermore, we analyze the azimuthal-transmitting piezoelectric vibrator parameters. This paper presents a heating test apparatus and studies the admittance and driving responses of the vibrator at different temperatures. The transmitting piezoelectric vibrators showing a good consistency in the heating test were selected, and an underwater acoustic experiment was performed. The main lobe angle of the radiation beam, horizontal directivity, and radiation energy of the azimuthal vibrators and azimuthal subarray are measured. The peak-to-peak amplitude radiated from the azimuthal vibrator and the static capacitance increase with an increase in temperature. The resonant frequency first increases and then decreases slightly with an increase in temperature. After cooling to room temperature, the parameters of the vibrator are consistent with those before heating. Hence, this experimental study can provide a foundation for the design and matching selection of azimuthal-transmitting piezoelectric vibrators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.