Abstract
Superconducting magnets are widely used in nuclear fusion reactors, high-energy particle accelerators, steady-state high magnetic fields, etc. Higher magnetic fields and higher operating temperatures are two application trends. High temperature superconducting (HTS) materials are the only choice for high temperature and high field magnets in the future. The first- and second-generation HTS materials have a typical tape structure; their critical performance is magnetic field angle and temperature dependent. A new test facility is developed for an experimental study on the an-isotropic critical current. The field angle can be changed from 0° to 360° with a resolution of 1°. The rotation deviation angle is measured to be 0.2° when the upper part rotates 90°. The temperature can be changed from 4.2 to 80K. The temperature errors are ±50, ±80, and ±135 mK for 4.2-20, 20-40, and 40-80K, respectively. The angle dependence of critical current (Ic) of the tested rare-earth barium copper oxide tape within 0°-30° is strong. From 30° to 90°, the sample Ic almost does not change with the magnetic field angle. The implementation of the project will not only promote the structural optimization of HTS tapes but also promote the miniaturization and economical application of HTS magnets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.