Abstract

To develop novel wave energy conversion devices (WECDs) with excellent performance, the relative wave height and pressure in the chambers of square and curved oscillating water column (OWC) WECDs were compared through physical model tests, and the effects of regular incident wave factors, the opening length, the opening width, and the chamber volume on the aerodynamic performance and wave energy capture efficiency (WECE) of the WECDs were investigated. The results indicated good chamber performance for both the square and curved OWC WECDs. As the incident wave height increased, the wave surface elevation, WECE, and pressure in the chamber all increased, while the relative wave height in the chamber decreased. When the opening length, width, and area of the WECD increased, both the relative wave height and chamber pressure increased. The relative wave height in the chamber increased with decreasing chamber volume; however, the chamber pressure and intrachamber WECE decreased with increasing chamber volume. It is recommended that, in actual engineering applications, the overall efficiency of the device be improved by increasing the opening length, width, area and volume of the air chamber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call