Abstract

Tritium behavior in the reactor such as production, diffusion and release are accompanied by their adsorption and desorption in graphite materials, which are essential to the safety of high temperature gas cooled reactor (HTGR). In order to study this important issue, hydrogen instead of tritium is experimentally used in this work and justified viable by theory. By performing multiple sets of comparative experiments, the features of hydrogen adsorption and desorption behavior changing by adsorption temperature and time in typical graphites used in HTR-PM (High Temperature Gas Cooled Reactor – Pebble Bed Module), i.e. reflective layer, fuel element and boron carbon bricks, have been observed and analyzed. Furthermore, the adsorption rates of hydrogen in the three materials as above at different conditions are also given. Based on the experimental results, tritium behavior in the HTR-PM was inferred and estimated, which is significant for the further study on the mechanism of tritium transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call