Abstract

The packing densification of binary spherical mixtures under 3D mechanical vibration was studied experimentally. The influences of vibration frequency (ω), volume fraction of large spheres (XL), sphere size ratio (r, diameter ratio of small to large spheres), and container size (D) on the random binary packing density (ρ) were systematically analyzed. For any given set of conditions, there exist optimal ω and XL to realize the densest random binary packing; too large or small ω and XL is not helpful for densification. The influences of both r and D on ρ are monotonic; either reducing r or increasing D leads to a high value of ρ. With all other parameters held constant, the densest random packing occurs when XL is dominant, which is in good agreement with the Furnas relation. Moreover, the highest random binary packing density obtained in our work agrees well with corresponding numerical and analytical results in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call