Abstract

FRP tendons and cables are increasingly being used in civil engineering structures due to their high strength-to-weight ratio and corrosion resistance. The bond anchorage factors, which characterize the bond strength between the FRP tendon/cable and the surrounding materials, play a critical role in determining the overall performance of the system. In this study, a series of tensile tests were conducted on FRP tendons/cables with different bond anchorage factors to evaluate their load-carrying capacity, load-displacement curve, and strain distribution. The study considered different types and surface shapes of FRP tendons/cables, and determined the influence of anchoring length, bonding medium type, and bonding medium thickness on the performance. The strain distribution of FRP tendons/cables at the anchorage end gradually increased along the loading section to the free end. A stress analysis model of the anchoring section was proposed and found to be consistent with the test results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call