Abstract

Electrochemical multi-wire sawing (EMWS) is a hybrid machining method based on a traditional multi-wire sawing (MWS) system. In this new method, a silicon ingot is connected to a positive electrode; the slicing wire is connected to a negative electrode. Material is removed by the interaction of mechanical grinding and an electrochemical reaction. In this paper, contrast experiments of EMWS and MWS were conducted based on industrialized equipment to verify the beneficial effects of the hybrid method. The experimental statistical results show that the composite processing method improved the processing qualification rate by 1.28%, and the Bow of silicon wafers was reduced by about 2.74 microns. Further testing on the surface of the silicon wafer after electrochemical action showed that obvious holes were present on the surface, and the surface hardness of the wafer decreased significantly. Therefore, the scratches on the surface of wafer sliced by EMWS were reduced; in addition, the thickness of the surface damage layer was reduced by about 9 microns. After standard texturing, the average reflectivity of the wafers sliced by EMWS was about 2–10% lower than that of the wafers sliced by MWS in the wavelength of 300–1100 nm. In this paper, the voltage parameter of the composite machining is set to 48 V; the amount of electrolyte added in each experiment is 2 L; and a good machining effect is obtained. In the future, the electric parameters and cutting fluid components will be further studied to improve the electrochemical effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.