Abstract

To explore the strength development characteristics and engineering performance of different coal-based solid waste filling materials cemented into filling body, coal gangue was used as coarse material, fly ash, desulfurization gypsum, gasification slag, and furnace bottom slag as fine material, and cement as a gelling agent. The uniaxial compressive strength (UCS) and bleeding rate of coal-based solid waste cemented backfill (CBSWCB) were tested by an orthogonal experiment, and the influencing factors of mechanical properties and strength development were analyzed. The multiple generalized linear model of strength and bleeding rate was established, and the optimal filling material ratio was determined. The engineering performance index of CBSWCB with the optimal ratio was tested. The results show the following points: (1) the concentration and content of desulfurization gypsum had a great influence on the early compressive strength of CBSWCB, while fly ash, gasification slag, and furnace bottom slag had little influence on the early compressive strength. (2) High concentration, high content of fly ash and furnace bottom slag, low content of desulfurization gypsum, and gasification slag can significantly improve the early strength. High concentration and high content of fly ash, low content of gasification slag, furnace bottom slag, and desulfurization gypsum are beneficial to the later strength increase. (3) Under the optimal ratio scheme, the bleeding rate of CBSWCB was 1.6%, the slump was 16.6 cm, the cohesion was general, the segregation resistance was good, the initial setting time was 5.42 h, the final setting time was 7 h, and the early strength after curing for 8 h reached 0.24 MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.