Abstract

This paper presents the experimental results of stabilization of a model power transmission system by using a Superconducting Magnet Energy Storage (SMES). The SMES, which was composed of two sets of GTO (Gate Turn Off thyristor) power converters and a superconducting coil, is capable of controlling active power (P) and reactive power (Q) simultaneously in four quadrants by changing the firing angles of power converters. The model power transmission system was designed to simulate the behavior of a real scale long distance bulk power transmission system with voltage of 500 kV, capacity of 2000 MVA and length of 280 km. In this study, we have experimented power system stabilizing control by applying P-Q simultaneous control ability of SMES. From the results of experiment it was demonstrated that stabilizing effect by means of SMES is very significant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.