Abstract
The structural system of prefabricated self-centering steel frame (PSCF) was proposed previously by the author. Experimental studies focusing on PSCF connections, plane frame, overall structures as well as the numerical simulations were conducted. Compared with the self-centering steel frame (SCF), the PSCF has avoided the on-site aerial tension of steel strands and simultaneously achieves similar seismic performance as well as self-centering capacity. While the self-centering function of both PSCF and SCF may be restrained by conventional floor systems. Based on this thesis, a spatial PSCF with a new type of floor system containing sliding secondary beams was proposed in this paper to enable the frame expansion, and pseudo-dynamic and quasi-static tests toward it were conducted. The test results indicated that the proposed new floor system was reliable and feasible in accommodating the frame expansion. Meanwhile, the spatial PSCF with the new floor system has a favorable self-centering capacity, reliable gap-opening mechanism, superior seismic performance and enough redundancy to withstand multiple aftershocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.