Abstract

A set of experiments were conducted on the circumferential overlap trisection helical baffle heat exchangers with inclined angles of 20°, 24°, 28° and 32° single-thread and inclined angle of 32° dual-thread one, and a segmental baffle heat exchanger as a contrast scheme. The cylinder case of the testing heat exchanger is a common shell, while the tube bundle core could be replaced. The shell side heat transfer coefficient ho is obtained by subtract tube-side convection thermal resistance and tube wall conduction resistance from the overall heat transfer coefficient K. The curves of shell side heat transfer coefficient ho, pressure drop Δpo, Nusselt number Nuo, and axial Euler number Euz,o are presented versus axial Reynolds number Rez,o. A comprehensive performance index Nuo/Euz,o is suggested to demonstrate the integral properties of both heat transfer and flow resistance of different schemes, and the curves of Nuo/Euz,o versus Rez,o of the different schemes are presented. The results show that the scheme with inclined angle 20° performs better than other schemes, and the scheme with inclined angle 24° ranks the second, however the segment scheme ranks the last. The curves of Nuo/Euz,o of both schemes with inclined angle 32° of single-thread and dual-thread are almost coincident, even though their heat transfer coefficient and pressure drop curves are quite different. The results indicate also that for the circumferential overlap trisection helical baffle schemes the optimal inclined angle is around 20° instead of around 40° as rated by many literatures for the quadrant helical baffle schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call