Abstract

In order to study the shear behavior of high-strength reinforced Reactive Powder Concrete (RPC) beams, eight test beams were designed and fabricated for the shear test under symmetrical concentrated load. By observing the development and failure mode of diagonal cracks, the influence of shear span ratio, stirrup ratio, and longitudinal reinforcement ratio on the cracking load, shear capacity, and deflection of the test beam is analyzed. The results show that: in a specific range, the shear capacity increases with the increase of stirrup ratio and longitudinal reinforcement ratio and decreases with the increase of shear span ratio. The shear span ratio has the most significant influence on the component’s failure mode and deformation capacity. The increase of the stirrup ratio can improve the deformation capacity of the component in a specific range. It is conservative to use the code to design concrete structures to calculate the shear capacity of high-strength reinforced reactive powder concrete beams. It is suggested that the shear calculation formula suitable for high-strength reinforced reactive powder concrete should be adopted to make the theoretical calculation results closer to the measured values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call