Abstract

In a multistory building frame, stiff reinforced concrete (RC) infill walls may be terminated above the first story for architectural purposes, which may create a soft-first-story structure. To eliminate this detrimental situation, this paper proposes to separate the RC infill wall from the steel moment frame by slits. An experimental program of four one-bay-by-one-story steel moment frame specimens along with pushover analyses of multistory frame models were presented to validate the proposed idea. This study conducted cyclic loading tests on a total of four moment-resisting-frame specimens, which included one bare frame; one with ordinary RC infill wall; and two with side slits between RC wall and frame members. Furthermore, pushover analyses of multistory frame models with soft first story configurations were also conducted to illustrate the effect of RC infill walls with or without slit separation. Both experimental and analytical results showed that the stiff RC infill wall dominated the lateral resistance and drift capacity of the test specimens, and that by adding slit-separated features at the edges of infill walls improved the drift capacity. It is concluded that the slit-separated features can be a viable option to eliminate the soft-story problem caused by vertically irregular configuration of RC infill walls.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call