Abstract

Ti-pillared interlayer clay (PILC)-based catalysts ion exchanged with Fe were prepared and used for selective catalytic reduction of NOx using propylene as the reducing agent under oxygen-rich conditions. The relationship between structure and properties of the catalysts was studied using N2-adsorption/desorption, XRD, UV-vis, H2-TPR, and Py-FTIR. The results show that the prepared 19Fe/Ti-PILC catalyst can achieve complete removal of NO at 400°C, and N2 selectivity can reach over 90% and has better resistance to water vapor and SO2. N2-isothermal adsorption/desorption and XRD results show that structure of montmorillonite is opened, cross-linked pillars are effective, and a large specific surface area and pore volume are formed. UV-vis results show that the denitrification activity of the catalyst is related to content of oligomeric FexOy. Py-FTIR results show that both Lewis acid and Brønsted acid are presented on the catalyst surface. Fe3+ loading into the pillared clay can significantly increase the Lewis acid content. Lewis acid is one of the influencing factors on the denitrification activity of the catalyst. H2-TPR indicates that the catalyst has a strong reduction ability at about 400°C, and reduction ability of the catalyst is mainly represented by the reduction of Fe3+→Fe2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.