Abstract

This paper aims to develop two kinds of innovative precast steel reinforced concrete columns, which are partially precast steel reinforced concrete (PPSRC) columns and hollow precast steel reinforced concrete (HPSRC) columns. Both the two kinds of composite columns have precast reactive powder concrete (RPC) shells, and the PPSRC column has a cast-in-place column core. In this paper, a series of cyclic loading tests on 10 column specimens subjected to combined static axial loading and cyclic lateral loading were carried out to explore their seismic performances. All specimens were evaluated by the failure modes, hysteresis characteristics, strength and stiffness degradation, energy dissipation capacity and ductility. The effects of section shape, stirrup spacing, axial compression and concrete strength of cast-in-place inner-part were investigated in details. The experiment results indicated that the PPSRC columns exhibited more satisfactory seismic behavior than the HPSRC columns in terms of hysteretic behavior, strength degradation, ductility and energy dissipation, while their bearing capacities were almost identical under low axial compression. Steel fibers could effectively prevent the cracked concrete from spalling, therefore, the encased steel shape was efficiently confined by the surrounding concrete during the entire test process. Higher stirrup ratio and lower axial compression of the column leaded to more satisfactory energy dissipation capacity, stiffness degradation and higher ductility. Based on the plastic stress theory, the seismic bending moment capacity analysis was conducted, and the results obtained form the formulas agreed well with those from the experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.