Abstract

In order to study the radon release behavior when heap leaching uranium ores with dilute sulfuric acid, unleached uranium ores from a uranium mine in southern China were selected as test samples. Adopting parameters from leaching processes commonly used in uranium mines, a laboratory experiment was carried out for 21days with a one-dimensional acid heap leaching experimental column. The surface radon exhalation rate of uranium ore column was determined by static accumulation method while spraying with deionized water and dilute sulfuric acid. The uranium leaching rate and ore column height for all 21days of the experiment were also measured. The results show that (1) when sprayed with a leaching agent, the surface radon exhalation rate of uranium ore column initially increased with time sharply. After a maximum value was reached, the rate gradually decreased and stabilized. When the spraying stopped, the surface radon exhalation rate of uranium ore column initially decreased, before increasing until it tended to stabilize. (2) During the entirety of the 21-day leaching experiment, the cumulative leaching rate of uranium increased gradually with time. On the other hand, the surface radon exhalation rate of uranium ore column fluctuated, but the leaching of uranium from uranium ores had almost no effect on the radon exhalation rate. (3) There was no linear correlation between the surface radon exhalation rate and the residual height of ore column during leaching, but the collapsing event of ore column was the direct inducing factor of the fluctuation of surface radon exhalation rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.