Abstract

The general effect mechanism of pulsed gamma-ray on optical fibers is introduced. In order to measure pulsed gammaray radiation-induced loss, a transient experimental measurement system is developed. It employs pulsed diode lasers with five wavelengths as detecting carriers and high dose rate electron accelerator as irradiation source. The radiationinduced loss of pulsed gamma-ray on conventional single mode and multi-mode optical fibers are measured respectively. The experiment of two rare-earth-doped fibers spontaneous emission spectrum measurement system is established and the results of Er-doped and Yb-doped fibers are obtained also. Experimental results show that: (1) Radiation-induced loss is relevant to the fiber types. On the same experimental condition of pulsed gamma-ray radiation, the radiationinduced loss of multimode fibers is larger than single-mode fibers. (2) Radiation-induced loss will increase as the laser detecting wavelength shifts from near-infrared to visible regions of optical spectrum. (3) As the total dose increases, the spontaneous emission spectrum of the doped fibers decreases greatly, and the performance of the doped fiber will fail at a certain total dose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.