Abstract

Magnetic fluid seal (MFS) has been widely applied in the vacuum environment, but its pressure transfer mechanism has been less studied. This paper investigates the pressure transfer mechanism of MFS in the vacuum environment by designing an experimental device of MFS mechanism, which can observe the change of liquid film during the pressure transfer. Meanwhile, the pressure transfer mechanism of the designed device in the vacuum environment is compared with the that of MFS in the gas environment. The self-repairing performance of MFS in both vacuum and gas environments is investigated. Based on the MFS theory, the magnetic field distribution of the experimental device is analyzed numerically, and the theoretical pressure resistance is calculated and compared with the experimental value. The results show that the pressure transfer mechanism of MFS in the vacuum environment is similar to that in the gas environment with different forms. The pressure transfer form in the vacuum environment is magnetic fluid liquid film to produce a leakage channel. It is concluded that the self-repairing performance of MFS in the vacuum environment is better than that in the gas environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call