Abstract

Ultra-wideband (UWB) radar, with high range resolution and ability of penetrating dielectric media, has a great potential for innovative non-destructive testing for aging roads or bridges or non-invasive medical imaging. We have already proposed an accurate permittivity estimation method for a homogeneous dielectric object based on the geometrical optics (GO) approximation, where dielectric boundary points and their normal vectors are directly reproduced by the range point migration (RPM) method. In addition, the finite-difference time domain (FDTD) based waveform reconstruction method was incorporated to compensate for errors incurred by the GO approximation. This paper shows the experimental investigation of this method, where the new approach for suppressing the creeping wave along dielectric boundary is introduced. The results from real observation data validate its effectiveness, in terms of highly accurate permittivity estimation and buried object boundary reconstruction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.