Abstract
A novel annular spouted bed was developed and studied experimentally. The experiments were performed to examine the effects of feeding mode, air velocity and static bed height as well as particle size on particle mixing for different conditions in this device. The results show that feeding by a rotating cone greatly improves particle mixing by homogeneously projecting the particles into the annular bed. For feeding by a rotating cone, the time required to get uniform mixing laterally is shorten almost 10 times less than that for feeding at a fixed point. With increasing air velocity, the axial mixing speed increases more significantly than the lateral mixing speed. The static bed height has important effects on the uniformity of the final admixtures. With increasing static bed height, the degree of mixing of the final mixture (FDM) axially first decreases, then increases, but laterally, the FDM is monotone decreasing. The particles of small size are helpful to raise the mixing speed. In addition, the dead zone in the annular spouted bed was analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.