Abstract

Moldability and segregation of feedstock are linked to the rheological behavior of the powder-binder mixture. In this study, the impact of binders on viscosity and segregation of feedstocks was investigated. The experiments were conducted on several feedstocks obtained by mixing Inconel 718 powder with paraffin wax-based binder systems. The viscosity of feedstocks was measured by a rotational rheometer while the segregation within green parts was evaluated using a thermogravimetric analyzer. It was demonstrated that the variation in solid loading within a molded part can be measured with a sensitivity of at least ±0.25 vol% of powder. The results indicated that the predominant powder-binder separation appears clearly at the top and the bottom of the molded part. It was also shown that the viscosity profiles of feedstocks and the intensity of segregation depends significantly on the binder constituents used in feedstock formulation. The mixture containing only paraffin wax produced the best trade-off between high moldability and low segregation for an injection process requiring an extended time range between injection and solidification of the part (e.g. up to 10 min). For a short processing time (e.g. <1 min spent in molten state), the feedstocks containing paraffin wax with stearic acid or small amount of ethylene vinyl acetate can be also considered as good candidates for LPIM process because their viscosity and segregation potential are relatively low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.