Abstract

In order to apply grouting material to the joints of fabricated buildings and make it meet the performance demands of low shrinkage, strong bond, and high toughness of joint materials for prefabricated buildings, the expansion agent (EA), neoprene latex (NL), and rubber particles (RP) were used to modify the grouting material, and the effects of different dosages of the three components on the working performance, mechanical properties, and expansion or shrinkage properties of the grouting material were investigated. The results show that the EA decreases the flexural strength-to-compressive strength ratio (FCR) of the grouting material and enhances the vertical expansion rate and bond strength. The dosage of EA and the curing conditions have a significant effect on the expansion rate of the hardened grouting material. The grouting material can still maintain its 0.0022% free expansion rate with a 7% EA dosage at 120 d. The NL significantly inhibits the vertical expansion of the fresh mortar but inhibits the drying shrinkage of the grouting material after hardening, improves the FCR and bond strength; the 7 d bond strength under a 5% NL dosage can reach 4.27 MPa. The RP inhibits the vertical expansion of the fresh mortar and the drying shrinkage after mortar hardening; with the increase of its dosage, the bond strength of the grouting material increases first and then decreases, the 28 d FCS of the grouting material peaked at 0.173 at 10% dosage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.