Abstract

Abstract Plutonium(IV) sorption onto quartz in carbonate solutions was systematically investigated under anaerobic conditions to analyze the sorption behaviors of Pu(IV) with a non-electrostatic model (NEM). Pu(IV) sorption data was obtained from batch sorption experiments as a function of pH and carbonate concentration. The Pu(IV) sorption onto quartz showed similar tendencies to Th(IV), which is considered to be chemically analogous as a tetravalent actinoid. The distribution coefficient, K d , of Pu(IV) onto quartz showed inverse proportionality to the square of the total carbonate concentration under the investigated pH conditions of 8–11. The modeling study, however, revealed a Th(IV) sorption model, which is ≡SOTh(OH)4 − and ≡SOThOH(CO3)2 2−, could not be applied to simulate the Pu(IV) sorption onto quartz. It was inferred that the electrostatic repulsion between negatively charged ligands limited the formation of ≡SOM(OH)4 − and ≡SOMOH(CO3)2 2− for Pu(IV) with smaller ionic radii than Th(IV). The Pu(IV) sorption model was developed as ≡SOPu(OH)3 and ≡SOPu(OH)4 −. In addition, data of Pu(IV) sorption onto muscovite was obtained in order to be compared with data for quartz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call