Abstract

Polymer concrete, which contains silica fume powder and vinyl ester resin as two replacements for Portland cement, has improved mechanical properties and durability compared to ordinary concrete. Thus, this kind of concrete is considered to be a high-strength concrete that is resistant to corrosion and chemical attacks. In this paper, the effects of the combination of silica fume powder and vinyl ester resin as two Portland cement replacements on the workability and slump value, initial and final water absorption, compressive and tensile strength, and failure and fracture paths of the polymer concrete have been investigated. All investigations have been based on 16 different polymer concrete mixture designs. The results indicate that the optimum percentages for a combination of silica fume and vinyl ester resin, which has the maximum compressive strength (34.26 MPa) and the maximum tensile strength (4.92 MPa), are a combination of 10% silica fume and 5% vinyl ester resin. To evaluate the durability of polymer concrete, the water absorption of all mixture designs has also been measured. Accordingly, the mixture design, which includes a combination of 15% vinyl ester resin and 5% silica fume, has a minimum initial and final water absorption equal to 0.62% and 1.95%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call