Abstract

In recent years, high-strength bolts with friction-type joints have been lengthened to withstand increased traffic load. However, with increase in the joint length, the force able to be resisted by bolted joints has decreased owing to uneven distribution of the bolts within the joint. In addition, the proximity of secondary members to the joint has restricted the allowable size of the splice plates. It is therefore necessary to reduce the joint length while maintaining its design strength. In this study, interference fit bolts were assembled at both ends of a friction-type bolted joint to form a hybrid joint, and tensile tests were conducted to elucidate the load transmission mechanism, analyse the slip resistance, and verify whether the addition of the interference fit bolts improves the strength of the friction-type joint. It was concluded that despite a minor slip in the hybrid joint, the slip resistance was approximately 10% higher than that of the friction-type joint, and the overall load–deformation relationship maintained a quasi-linear behaviour up to 1.1 times the slip resistance of the friction-type joint. In addition, the hybrid joint had smaller data scattering than the friction-type joint, suggesting that the uneven load distribution and deformation in the joint was slightly improved by installing the interference fit bolts. The performance of hybrid joints is superior to that of the existing friction-type joints under the current slip limit specification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.