Abstract

In order to investigate the effects of temperature, residence time (RT) and methoxyl (OCH3) on the product distribution and vapor phase reactions during pyrolysis of complex solid fuels, three model phenolic representatives, phenol, guaiacol and syringol, were pyrolyzed at a residence time of 0.7 s, over a temperature range of 400 °C–950 °C, and at temperatures of 650 °C and 750 °C, in a RT region of 0.1 s–4.2 s. Increasing yields of CO and C1–C5 light hydrocarbons (LHs) with RT at 650 °C and 750 °C indicated that ring-reduction/CO elimination of phenolic compounds happened at 650 °C, and dramatically at 750 °C. The addition of OCH3 affects the product distribution and ring-reduction pathways: C5 LHs from phenol, C2 LHs, C4 LHs and C5 LHs from guaiacol, and C1–C2 LHs from syringol. CO2 yields increase with the addition of OCH3. CO2 was formed via benzoyl and a four-membered ring, which would compete with the CO formation. The addition of OCH3 promotes the formation of coke and tar. The decomposition pathways are discussed, based on the experimental data, focusing on ring-reduction reactions and the formation of CO/CO2 and C1–C5 LHs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call