Abstract
Austenitic stainless steels find extensive applications in engineering and structural parts requiring inherent corrosion resistance. The main objective of this study is to achieve good quality butt joint in 2.5-mm thick 304 grade Stainless Steel. The joint quality is quantified in terms of weld-bead dimensions. The main issue that manufacturers face is controlling the input process parameters, to get a good quality joint, with required weld bead geometry under controlled thermal distortion. The objective of this work is to select proper input process parameters that would result in desirable weld-bead profiles with minimal heat input. The critical process parameters influencing laser-welding were found using response surface methodology technique. The results proved that the developed model could efficiently predict the responses. The criteria demonstrated a possible reduction in top width of weld bead with enhanced depth of penetration, which automatically envisaged an increase in aspect ratio. A two-factor five-level criteria design was used for predicting the optimized parameters by performing multi-response optimization. Among them, the third criterion has shown a significant decrease in heat input and it was chosen as the best-optimized parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.