Abstract

Typical specimens of AZ31B Magnesium alloy were processed by single point and continuous laser shock peening (LSP). The selected laser energy was 25 J, spot diameter was 8 mm, peening spacing was 8 mm and peening times were 2. The obtained value of residual compressive stresses were -144.3 MPa and -230 MPa for single and continuous LSP respectively, and the magnitude of residual stress was in direct proportion to the depth of deformation in definite micro-deformation range. The average surface micro-hardness in the laser spot zone was 92.42 HV, which increased by 26% as compared to 73.2 HV of substrate, the depth of hardened layer was about 0.3 mm, and the maximum micro-hardness was about 109.86 HV beneath surface of 0.05~0.075 mm. Large amount of crystal chunks appeared at the crystal grain boundaries and inside the grains, and the average grain size decreased from the untreated 7 μm to the peened 4 μm. The results show that the nucleation of fatigue crack can be retarded and the mechanical properties of AZ31B magnesium alloy sheet can be improved greatly with LSP process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.