Abstract

Concrete Filled Steel Tubular (CFST) structures are increasingly used not only for columns in tall buildings but also in the arch trusses of many arch bridges and in the truss girders of buildings and bridge decks. Therefore, the chords of Circular Hollow Section (CHS) truss arches and girders are increasingly filled with concrete, effectively making them CFST structures. In addition to the strength and stiffness of the CFST members, the failure mode of the CFST joint connecting them to the tubular member is also affected by the concrete filling. In this study, truss girders with different web arrangements were tested, and their behaviour investigated. The girders were not slender because they were designed to attain the peak limiting state for joint failure rather than chord failure due to bending moments. Moreover, two other types of girders were tested: one without concrete-filled chords (CHS girder) and another with only the upper chord filled with concrete; thus allowing an investigation of how a concrete-filled chord affects joint failure mode. The geometry of the CHS girder joints was such that only chord face failure and punching shear failure could occur. The former required an inward deformation that was prevented by the concrete filling in a CFST girder with similar geometry. Finally, the study considers extending the Eurocode 3 and the AWS D1.1 code formulae, originally proposed for CHS joints, to calculate the resistance of CFST joints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.