Abstract

Abstract In this paper, self-reinforced samples with different mechanical properties were obtained by adjusting the molding parameters by co-injection molding technology, and the micro-morphology of these samples was observed. Then, using structured statistical methods, the analysis of variance and response surface methodology were used to study the effects of various molding variables on the morphology and properties of the materials, and to determine the most important molding variables and their interaction relationships. Finally, the associated experimental data were fitted by the least square minimization program, and the parameters in the fitting equation were dimensionless to obtain the correlative dimensionless equation. The purpose was to establish the mechanism model of the influence of the molding parameters on the co-injection self-reinforced sample and to objectively analyze its mechanism. It was found that the melt temperature is the most important factor affecting the morphology and mechanical properties. The highly oriented skin thickness is the most important factor in determining the tensile properties of the sample. The change in crystallinity is the most important factor in relation to the elastic modulus. Through the establishment of the relevant dimensionless equations, the theoretical study on the tensile strength and elastic modulus of the co-injection self-reinforced samples of the molding parameters was preliminarily realized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call