Abstract
The fuel spray injected into a direct injection (DI) engine is substantially affected by both the in-cylinder air flow and the piston cavity wall impingement. The combined effect of the air flow and the wall impingement plays an important role on the spray development, mixture formation, and subsequent combustion. In this study, the effects of cross-flow and flat wall impingement on the spray development and dispersion were investigated. The spray was injected by a valve covered orifice (VCO) nozzle under various cross-flow velocities and ambient pressures. Impingement spray images in a vertical plane and several horizontal planes were obtained by a high speed video camera and a continuous wave laser sheet. A high speed video camera connected with a long-distance microscope was employed to obtain the near-field spray images. The results show that cross-flow favors spray dispersion while the high ambient pressure tends to compress the spray profiles. Additionally, under an approximate liquid-to-air momentum flux ratio q, when the ambient pressure and cross-flow velocity were varied, at 2 ms ASOI the outlines of the spray in the windward side agree well, whereas the spray extended further in the leeward side at a lower ambient pressure. At the plane of y = 25 mm, a complex vortex movement was observed that resulted in a non-uniform distribution of droplets in the upper part of the spray in the leeward side. In addition, at the plane of y = 45 mm, an empty belt area occurred in the vortex core region revealing that the density of the droplets in this region was quite low. The quantitative analysis shows that with increasing cross-flow velocity, the spray tip penetration decreases slightly before impingement while the spray tip penetrates further on the wall surface after impingement. The high cross-flow velocity favors the spray breakup and dispersion leading to a larger wall-jet vortex while the high ambient pressure restrains the spray dispersion leading to a smaller spray tip penetration and vortex height. For near-field spray, the spray image at higher ambient pressure shows fewer ligaments. With increasing cross-flow velocity, the whole spray shifted downstream. The spray outline was wider at the initial stage (0.05 ms ASOI) than that at steady stage (2 ms ASOI) of spray evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.