Abstract

Abstract The concept of employing thermoelectric generators (TEGs) to recover energy from waste heat has gained popularity, with applications that range from milliwatt to kilowatt levels of output power. In this study, a hybrid photovoltaic panel and thermoelectric generator (HPVTEG) system consisting of an integrated heat exchanger, a commercial polycrystalline silicon photovoltaic (PV) panel and a commercial bismuth telluride TEG was proposed. Here, TE components can be used to cool PV modules, increasing their output power via the Seebeck effect. The main finding is that the hybrid system has a reduced average temperature of 16.01°C. The average power of the stand-alone PV panel is 28.06 W, but that of the HPVTEG system is 32.76 W, which is an increase of 4.7 W. The conversion efficiency and power of the hybrid system increased by 16.7% and 16.4%, respectively, compared with a stand-alone PV panel. The HPVTEG system achieved an average exergy efficiency of 12.79% compared with 10.98% for a stand-alone PV panel. According to the calculation results, the levelized cost of energy (LCOE) of the stand-alone PV panel can range from 0.06741 to 0.10251 US$/kWh depending on how many days it is in operation, while the LCOE of the HPVTEG system can range from 0.06681 to 0.10160 US$/kWh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.