Abstract
Nanofluid as a transport medium displays a great potential in engineering applications involving heat transfer. In this paper, the execution of water and ethylene glycol-based TiO2 nanofluid as a radiator coolant is resolved experimentally. The convective heat transfer coefficient of TiO2/EG-Water nanocoolant has been estimated and contrasted with the information acquired experimentally. Nanocoolant were set up by taking 25% ethylene glycol and 75% water with low volume concentration of TiO2 nanoparticles. All the experiments were led for the distinctive volume flow rates in the range going from 30 to 180 L/h (LPH). The nanocoolant made to flow through curved radiator tubes in every experiment, so that it can exchange heat effectively. Result shows that increasing the volume flow rate of nanocoolant flowing in the radiator tubes, increases the heat transfer as well as the convective heat transfer coefficient of nanocooant. Maximum heat transfer enhancement of 29.5% was recorded for nanocoolant with 0.03% nanoparticle concentration as compared to water at 150 LPH. Apart from this nanoparticle concentration into the base fluid, no further enhancement in heat transfer has been observed at any volume flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.