Abstract

Summary Steam-assisted-gravity-drainage (SAGD) processes become effective only after thermal and hydraulic communication between an injection and production well has been established during the startup operation of the well pair. Conventional steam-circulation startup operations typically take 2 to 3 months to achieve interwell communication, but reductions in the startup time can have a favorable impact on project economics. Enhancement of interwell permeability using fluid-injection (water, or steam, or solvent) strategies to promote geomechanical dilation of the oil sands has been proposed as a startup technique. These fluid-injection processes will produce complex interactions of thermal, geomechanical, and multiple-phase flow behavior in the interwell formation region. Understanding better the role that these interactions play in establishing well-pair communication will provide opportunities to improve SAGD recovery performance. A triaxial experimental program has been designed and executed to explore whether cold-water injection would be sufficient to induce enhancements in effective permeability to water from geomechanical dilation mechanisms. Sample preparation techniques were modified to allow the preparation of reconstituted, very dense water-wet/bitumen sand specimens with different fluid saturations and almost identical porosities. Reclaimed/cleaned tailings sand from oil-sands mining operations was used to prepare artificial specimens, which are representative of McMurray Formation oil sands. A water-wet or bitumen sand core plug was then tested in an environmental chamber to simulate reservoir boundary conditions in terms of stress state, temperature, and pore pressure. A set of experiments was carried out in a triaxial cell under either initial isotropic or initial anisotropic stress state. Experimental results highlight the promising potential to dramatically enhance effective permeability to water and porosity in the dilated zone using cold-water injection at modest levels of stress anisotropy. The experimental results also provide support for the development of numerical models used in predicting SAGD startup performance and proactive utilization of the dilation as startup process for in-situ oil-sands development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call