Abstract

Abstract The shale gas reservoirs are composed of porous media of different length scales such as nanopores, micropores, natural fractures and hydraulic fractures, which lead to high heterogeneity. Gas flow from pores to fractures is under different flow regimes and in the control of various flow mechanisms. The gas slippage would have significant effects on gas flow in shale. To obtain the effect of slippage on gas flow in matrix and fractures, contrast experiments were run by using cores with penetration fractures and no fractures from Marine Shale in Southern China under constant confining pressure. The results showed that slippage effect dominates and increases the gas permeability of cores without fractures. To cores with penetration fractures, slippage effect is associated with the closure degree of fractures. Slippage dominates when fractures close under low pore pressure. Slippage weakens due to the fractures opening under high pore pressure. Fracture opening reduces the seepage resistance and slippage effect. The Forchheimer effect occurs and leads to a permeability reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.