Abstract

This study experimentally investigates fundamental phenomena in the HTGR small break air-ingress accident. Several important parameters including density ratio, break angle, break size, and main flow velocity are considered in the measurement and the analysis. The test-section is made of a circular pipe with small holes drilled around the surface and it is installed in the helium/air flow circulation loop. Oxygen concentrations and flow rates are recorded during the tests with fixed break angles, break sizes, and flow velocities for measurement of the air-ingress rates. According to the experimental results, the higher density difference leads to the higher rates of air-ingress with large sensitivity of the break angles. It is also found that the break angle significantly affects the air-ingress rates, which is gradually increased from 0° to 120° and suddenly decreased to 180°. The minimum air ingress rate is found at 0° and the maximum, at 110°. The air-ingress rate increases with the break size due to the increased flow-exchange area. However, it is not directly proportional to the break area due to the complexity of the phenomena. The increased flow velocity in the channel inside enhances the air-ingress process. However, among all the parameters, the main flow velocity exhibits the lowest effect on this process. In this study, the Froude Number relevant to the small break air-ingress conditions are newly defined considering both heavy and light fluids, and break angles. Based on this definition, the experimental data can be well re-arranged and collected. Finally, this study develops and proposes a non-dimensional parameter and a criteria for determination of the small break air-ingress flow regimes. As a result, the non-dimensional parameter higher than 0.49 indicates that the air-ingress is mainly controlled by density gradient effect. On the other hand, that lower than 0.47 indicates that the other effects such as inertia or diffusion are dominant air-ingress mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call